Search results for " 35J92"

showing 10 items of 21 documents

Monotonicity and enclosure methods for the p-Laplace equation

2018

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

Convex hull35R30 (Primary) 35J92 (Secondary)EnclosurePerturbation (astronomy)Monotonic function01 natural sciencesConstructiveMathematics - Analysis of PDEsEnclosure methodFOS: Mathematics0101 mathematicsMathematicsInclusion detectionMonotonicity methodLaplace's equationmonotonicity methodApplied Mathematics010102 general mathematicsMathematical analysista111inclusion detection010101 applied mathematicsNonlinear systemMonotone polygonp-Laplace equationAnalysis of PDEs (math.AP)enclosure method
researchProduct

Enclosure method for the p-Laplace equation

2014

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

Convex hullGeneralization35R30 (Primary) 35J92 (Secondary)EnclosureMathematics::Classical Analysis and ODEsInverseMonotonic function01 natural sciencesTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsLaplace's equationMathematics::Functional AnalysisCalderón problemApplied Mathematics010102 general mathematicsMathematical analysisComputer Science Applications010101 applied mathematicsNonlinear systemSignal ProcessingJumpp-Laplace equationenclosure methodAnalysis of PDEs (math.AP)
researchProduct

Elliptic equations involving the $1$-Laplacian and a subcritical source term

2017

In this paper we deal with a Dirichlet problem for an elliptic equation involving the $1$-Laplacian operator and a source term. We prove that, when the growth of the source is subcritical, there exist two bounded nontrivial solutions to our problem. Moreover, a Pohozaev type identity is proved, which holds even when the growth is supercritical. We also show explicit examples of our results.

Dirichlet problemApplied Mathematics010102 general mathematicsMathematics::Analysis of PDEsType (model theory)01 natural sciencesTerm (time)010101 applied mathematicsElliptic curveIdentity (mathematics)Operator (computer programming)Mathematics - Analysis of PDEsBounded functionFOS: MathematicsApplied mathematics0101 mathematicsLaplace operator35J75 35J20 35J92AnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Uniqueness of positive radial solutions to singular critical growth quasilinear elliptic equations

2015

In this paper, we prove that there exists at most one positive radial weak solution to the following quasilinear elliptic equation with singular critical growth \[ \begin{cases} -\Delta_{p}u-{\displaystyle \frac{\mu}{|x|^{p}}|u|^{p-2}u}{\displaystyle =\frac{|u|^{\frac{(N-s)p}{N-p}-2}u}{|x|^{s}}}+\lambda|u|^{p-2}u & \text{in }B,\\ u=0 & \text{on }\partial B, \end{cases} \] where $B$ is an open finite ball in $\mathbb{R}^{N}$ centered at the origin, $1<p<N$, $-\infty<\mu<((N-p)/p)^{p}$, $0\le s<p$ and $\lambda\in\mathbb{R}$. A related limiting problem is also considered.

General MathematicsWeak solutionta111010102 general mathematicsMathematical analysisuniquenessPohozaev identity01 natural sciences010101 applied mathematicsElliptic curveMathematics - Analysis of PDEspositive radial solutionsSingular solutionFOS: Mathematicssingular critical growthquasilinear elliptic equationsasymptotic behaviorsUniqueness0101 mathematics35A24 35B33 35B40 35J75 35J92Analysis of PDEs (math.AP)MathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Calder\'on's problem for p-Laplace type equations

2016

We investigate a generalization of Calder\'on's problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation with p strictly between one and infinity, which reduces to the standard conductivity equation when p equals two, and to the p-Laplace equation when the conductivity is constant. The thesis consists of results on the direct problem, boundary determination and detecting inclusions. We formulate the equation as a variational problem also when the conductivity may be zero or infinity in large sets. As a boundary determination result we recover the first order derivative of a smooth co…

Mathematics - Analysis of PDEs35R30 (Primary) 35J92 35R05 35D30 35Q60 35Q79 35J20 35J25 35H99 35A15 35A01 35A02 80A23 (Secondary)
researchProduct

Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions

2023

In a complete metric space equipped with a doubling measure supporting a $p$-Poincar\'e inequality, we prove sharp growth and integrability results for $p$-harmonic Green functions and their minimal $p$-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general $p$-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted $\mathbf{R}^n$ and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for $p$-harmonic Green functions…

Mathematics - Analysis of PDEsGeneral MathematicsFOS: MathematicsPrimary: 31C45 Secondary: 30L99 31C12 31C15 31E05 35J08 35J92 46E36 49Q20AnalysisAnalysis of PDEs (math.AP)Journal d'Analyse Mathématique
researchProduct

A priori bounds and multiplicity of solutions for an indefinite elliptic problem with critical growth in the gradient

2019

Let $\Omega \subset \mathbb R^N$, $N \geq 2$, be a smooth bounded domain. We consider a boundary value problem of the form $$-\Delta u = c_{\lambda}(x) u + \mu(x) |\nabla u|^2 + h(x), \quad u \in H^1_0(\Omega)\cap L^{\infty}(\Omega)$$ where $c_{\lambda}$ depends on a parameter $\lambda \in \mathbb R$, the coefficients $c_{\lambda}$ and $h$ belong to $L^q(\Omega)$ with $q>N/2$ and $\mu \in L^{\infty}(\Omega)$. Under suitable assumptions, but without imposing a sign condition on any of these coefficients, we obtain an a priori upper bound on the solutions. Our proof relies on a new boundary weak Harnack inequality. This inequality, which is of independent interest, is established in the gener…

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsMultiplicity (mathematics)01 natural sciencesUpper and lower bounds010101 applied mathematicsMathematics - Analysis of PDEsBounded functionFOS: MathematicsA priori and a posteriori[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Boundary value problem0101 mathematicsComputingMilieux_MISCELLANEOUSAnalysis of PDEs (math.AP)35A23 35B45 35J25 35J92Harnack's inequalityMathematics
researchProduct

Existence and almost uniqueness for p -harmonic Green functions on bounded domains in metric spaces

2020

We study ($p$-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive capacity, and that they satisfy very precise capacitary identities for superlevel sets. Suitably normalized singular functions are called Green functions. Uniqueness of Green functions is largely an open problem beyond unweighted $\mathbf{R}^n$, but we show that all Green functions (in a given domain and with the same singularity) are comparable. As a consequence, for $p$-harmonic functions with a given pole we obtain a similar comparison result near the pole. Various c…

Pure mathematicsCapacitary potential; Doubling measure; Metric space; p-harmonic Green function; Poincar? inequality; Singular function31C45 (Primary) 30L99 31C15 31E05 35J92 49Q20 (Secondary)Harmonic (mathematics)Mathematical Analysis01 natural sciencesMeasure (mathematics)Domain (mathematical analysis)Mathematics - Analysis of PDEscapacitary potentialMatematisk analysFOS: MathematicsUniqueness0101 mathematicsMathematicsComplement (set theory)p-harmonicApplied Mathematics010102 general mathematicsmetric spacemetriset avaruudet010101 applied mathematicsMetric spacePoincaré inequalityBounded functionMetric (mathematics)doubling measurepotentiaaliteoriasingular functiongreen functionAnalysisAnalysis of PDEs (math.AP)
researchProduct

Superconductive and insulating inclusions for linear and non-linear conductivity equations

2015

We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear $p$-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation $\operatorname{div}(\sigma\lvert\nabla u\rvert^{p-2}\nabla u)=0$ where the measurable conductivity $\sigma\colon\Omega\to[0,\infty]$ is zero or infinity in large sets and $1<p<\infty$.

Pure mathematicsControl and Optimizationmedia_common.quotation_subjectMathematics::Analysis of PDEsBoundary (topology)probe methodConductivity01 natural sciencesMathematics - Analysis of PDEs35R30 35J92 (Primary) 35H99 (Secondary)FOS: MathematicsDiscrete Mathematics and CombinatoricsPharmacology (medical)Nabla symbol0101 mathematicsmedia_commonp-harmonic functionsLaplace's equationPhysicsPartial differential equationCalderón problemComputer Science::Information Retrieval010102 general mathematicsta111Zero (complex analysis)Infinity3. Good health010101 applied mathematicsNonlinear systeminclusionModeling and Simulationinverse boundary value problemAnalysisinkluusioAnalysis of PDEs (math.AP)enclosure method
researchProduct

Equivalence of viscosity and weak solutions for the $p(x)$-Laplacian

2010

We consider different notions of solutions to the $p(x)$-Laplace equation $-\div(\abs{Du(x)}^{p(x)-2}Du(x))=0$ with $ 1<p(x)<\infty$. We show by proving a comparison principle that viscosity supersolutions and $p(x)$-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Rad\'o type removability theorem.

Pure mathematicsPrimary 35J92 Secondary 35D40 31C45 35B60Applied MathematicsMathematics::Analysis of PDEsDirichlet distributionPotential theoryNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsFOS: MathematicssymbolsLaplace operatorEquivalence (measure theory)Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)MathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct